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ABSTRACT

Critical phenomena in the Arnold Engineering
Deveiopment Center (AEDC) High Performance Demonstration
Experiment (HPDE) and the U.S. U-25 Experiment, are analyzed.
Also analyzed are the performance of a NASA-specified 500
MW(th) flow train and computations carried out by STD Research
under Contract AC-01-79ET15501 concerning critical issues for
the scale-up of MHD Generators.

The HPDE is characterized by computational simulations
of both the nominal conditions and the conditions during the
experimental runs. The steady-state performance is discussed
along with the Hall voltage overshoots during the start-up and
shutdown transients. The results of simulations of the HPDE
runs with codes from the Q3D and TRANSIENT code families are
compared to the experimental resualts. The results of the
simulations are in grod agreement with the experimental data.

Additional <critical phenomena analyzed in the
AEDC/HPDE are the optimal load schedules, parametric variations
around the simulations of HPDE Run 006-014, the parametric
dependence of the electrode voltage drops, the boundary laver
behavior, near electrode phenomena with finite electrode
segmentation, and carrent distribution in the end regions.

The U.S. U-25 experiment 1is characterized by
computational simulations of the nominal operating conditions.
Tne steady-state performance for the nominal design of the U.S.
U-25 n~xperiment is analyzed, as is the dependence of
performance on the mass flow rate.
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A NASA-specified 500 MW(th) MHD flow train is
characterized for computer simulation and the electrical,
transport, and thermodynamic properties at the inlet plane are
analyzed.

Issues for the scale-up of MHD power trains are
discussed. The AEDC/HPDE performance to date is analyzed to
compare these experimental results to scale-up rules. The
optimum Mach number distribution is analyzed with emghasis upon
its effect on part-load and transient behavior. The effects of

alternate cross-sectional shapes on channel performance are
also evaluated.
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ANALYTICAL INVESTIGATION OF CRITICAL PHENOMENA
IN MHD POWER GENIRATORS

1.0 INTRODUCTION

U.S. MHD technology for commercial power generation
has made a significant transition in 1980. Test data is being
obtained for MHD power trains of sufficient scale, interaction,
and durability to bridge the gap between prior laboratory scale

<periments and the requirements of commercial systems. In
addition, detailed design studies are being initiated for
advanced power train concepts which will ultimately lead to
pilot-scale tests of a coal-fired MHD power plant. The
significant power train projects in this transitional phase of
MHD technology include the AEDC High Performance Demonstration
Experimeni: (HPDE), the U.S. U-25 generator/diffuser; U.S.
participation in the U-25B experiments, the UTSI Coal Fired
Flow Facility (CFFF), the Advanced Power Train (APT) for the
Componert Development and Integration Facility (CDIF), and the
Engineering Test Facility (ETF).

These projects each represent an important advance
beyond previous laboratory experience. In contrast to past
laboratory experiments, these projects test MHD power trains in
which the interaction between the electrical forces and working
fluid will be strong enough to cause important departures from
classical internal duct gasdynamics. There are at present only
limited experimental data to guide the prediction of the
performance and behavior of MHD channels in such moderate-to-
high interaction situations. Likewise, there is a lack of
experimental data against which the test results of these
programs might be compared. Under NASA Contract DEN3-179, STD
Research Corporatior has continued the application of 1its



comprehensive analytical capabilities to predict and interpret
the behavior of high interaction MHD power traims. This Final
Report for Contract DEN3-179 describes the results of analyses
of high interaction experiments and designs carried out by STD
during this transitional phase of MHD technology.

The planning, detailed analysis, and interpretation of
the AEDC/HPDE and the U-25 experiments have been the subject of
concern at STD Research Corporation from their initial
conception [1-1]. During many years of contributions to the
initiation and evaluation of these experiments, STD Research
Corporation has analyzed many of the interim designs for the
experimental hardware. Under U.S. Department of the Interior,
and U.S. Department of Energy contracts since 1971, STD
Research has made numerous specific¢ recommendations for
improved test parameters and procedures for the HPDE and U.S.
U-25 tests. Many of the STD recommendations have resulted in
changes in test hardware and/or procedures.

Under DOE contract AC-01-79ET15501 and NASA contract
DEN3-179, STD Research has analyzed the "as-built"
specifications of the HPDE and U-25 experiments under nominal
operating conditions. These analyses have quantitatively
predicted the effects of critical, nonideal processes which
will control the performance of the HPDE and U-25 tests.
¥oreover, the work undei1 these contracts has mapped the
predicted nominal operating characteristics of those
experiments over the likely ranges of mass flow rate, working
fluid composition, diffuser recovery coefficient, wall
temperature, and other operating conditions.

Under Contract DEN3-179, STD Research has carried out
analysis of preliminary data from the first tests of the HPDE.



These experimental data confirm earlier analytical predictions
by STD Research Corporation, such as the presence of large
axial voltages during the start~up transient and the presence
of much-larger-than design electrode voltage drops. This
expcrimental confirmation of effects predicted by the STD
analytical tocls further validates the accuracy of these tools.

Studies of the nominal operation of the HPDE have
yielded estimates of the relative importance of critical
phenomena expected in the flow train tests. Unfortunately, the
experiments can never run at precisely the nominal conditionms.
A significant test of an analytical tool is its capability to
utilize ipputs from instantaneous measurements taken during a
test, and then to predict other quantities measured at the same
instant during the same test. Such data are now available from
the HPDE, and comparisons between such data and the STD/MHD
code results are presented in this report.

Previous test data analyses at STD Research
Corporation [1-2] have amply demonstrated the benefits of
careful test data analysis for providing data comnsistency and
understanding of the relative importance of the operative
physical processes. As data have been received from the HPDE,
STD Research Corporation has undertaken a detailed analysis of
appropriate, self-consistent data sets which have led to (1)
better understanding of the significance of each test .nd (2)
recommendations for improved test procedures.

The survey of the nominal performance of the U-25
generator designed and constructed in the United States was
carried to the point of evaluation of the "as-built"
performance of the channel. The channel has not been operated
to date, and therefore the analytical predictions oi the



studies of nominal performance have not been checked against
experimental data. Insights gained by the compar.son between
the analytical simulation of AEDC/HPDE experimental data were
applied to the U-235 nominal operating conditions. however.
These analyses focused on the implications of operating the
U-25 channel with cold walls without modification of the
original design loft. The results indicated that the electrode
boundary layer voltage drops would assume a major role in the
achievement of the 10 MW design goal with the "as-built" U-25
nominal operating conditions.

Perhaps the most important objective of analytical
modeling of any physical process is the development of the
ability to extend the results of experiments under one set of
conditions to the conditions of other experiments. To do this,
one must have the ability to exercise sufficiently rigorous and
complete physical models which do not depend upon the
application of adjustable, empirical factors in order to obtain
agreement with experimental data. The use of such rigorous
analytical tools, as are employed at STD Research Corporation,
place a substantial burden on the experimentalist to provide
precise, complete measurements for all of the physical data
required as input to the calculation. Experience at STD
Research Corporation [1-4] has shown that the combination of
well diagnosed experimental data and rigorous analyses can pay
dividends in understanding complex physical mechanisms and the
experimental data itself. After the initial '"shake down"
phases of HPLE testing, the HPDE is beginning to produce such
data. The simulations performed under Contract DEN3-179 have
been fruitful as a consequence.

It is of interest to extrapolate the results of <the
AEDC/HPDE experimental data analyses to-date to conditions of



higher interaction. These conditions include operation of
pilot scale and commercial scale MHD generators. Under
Contract DEN3-179 and its predecessors, STD tLesesarch
Corporation has characterized the bebhavior of MHD power trains
from laboratory scale to commercial scale utilizing a self-
consistent set of apalytical tools. It was shown in [1-3] that
the performance and fluid behavior of MHD power trains
correlates well with the appropriate _.nteraction pare—»te .
The performance and interaction parameters of the AEDC/HPDE
relative to generators of other scaies are survev~2? in the
rresent report.

Utilizing the results of calculations carried out
under Contract AC-~01-79ET15501, the scale dependence of the
performance of generators of alternate cross-sections
(elliptical and hexagonal) also has been analyzed. The
benefits of alternate cross-sectional geometries are strongly
dependent on the boundary layer characteristics present at a
particular station in a given channel. The poweir generation
potential of each of ‘*hree cross-sections in each of four
channels ranging in scale from 20 MW thermal input to 2000 MW
thermal input is compared. The comparison has been carried out
between the power actually generated and (1) the power
generation potential predicted by simplified electrical
calculations, (2) power generation with rectangular geometry,
and (3) ideal power generating zapability based on center-line
conditions at each axial station. While the analyses are
indicative of the potential benefits of alternate cross-
sectional configurations in MHD generators at various scales,
the results do not represent optimum configurations. A number
of additional computational degrees of freedom which were not
coasidered in the previous study may also serve to improve the
performance of generators of alternate cross-sections beyond
the levels demonstrated.



Finally, an analytical study of the scale dependence
of part load and transient behavior of MHD power generators is
summarized in the present report. It is shown that a critical
parameter for the successful part load operation of MHD power
generation is the velocity or Mach number distribution in the
MHD generator. The conclusion of this study has been that the
key to successfuli off-design or part load operation of MHD
generators is the maintenance of the Mach number distribution
at or near the optimum value for the stagnation conditions
existing at each station in the MHD generator.

This Final Report is organized according to the major
topics addressed during the course of Contract DEN3-179.
Section 2 presents a brief deseription of the coudes utilized
duri: g the analytical investigations, and points out documents
and literature in which fuller descriptions of the codes may be
found. Section 3 focuses on the analysis of the "as-built”
AEDC/HPDE, including the analysis of actual test data. Section
4 is devoted to special ~tudies based upon the simulations of
AEDC/HPDE experimental data described in Section 3. Section 5

describes the characteristics of the nominal, "as-built",
operating conditions and specifications of the U.S. U-25 flow
train. Section 6 describes the results of thermodynamic

calculations of coal combustion products, including estimates
of the electrical conductivity at the inlet of a NASA specified
500 MWth MHD generator. The purpose of Section 7 is to put the
results of the present contract and Contract AC-01-79ET15501
into the context of the overall development program for MHD
power generation. Sections 8 and 9 summarize the findings of
the report and enumerate the major recommendatiorns resulting
from the studies presented.



2.0

DESCRIPTION OF THE STD/MHD CODES

The STD/MHD codes are constructed from a large

collection of modules or subprograms which address various
aspects of the MHD problem. Taken together, these codes define
and solve the MHD problem, including, where applicable:

1.
2.
3.
4.
5.
6.

~
a e

8.
9.
10.

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.

23.

24.
25.
26.
27.
28.

30.
31.

32.
33.
34.

Viscosity and wall roughness

Vclume viscous losses

Wall roughness effects on skin friction

Other skin friction effects

Compressibility

Turbulence, including MHD effects

Turbulence structure parameters and transport coefficients

Convective heat transfer

Radiative heat transfer

Anisotropic, nonuniform, fluctuating electrical transport
properties

Nonuniform, fluctuating plasma/fluid properties

Nonequilibrium effects

Finite reaction rates, including ionization/recombination

Electron energy relaxation

Electron radiation losses

Electron thermal and concentration diffusion

Nonlinearity of the plasma as a conducting medium

Electrode surface and sheath phenomena

Electrochemical effects at the electrodes and slag layer

Finite electrode effects

Flow separation

Current leakage due to imperfect segmentation or slag
layer leakages

Axial current leakage in the plasma and interelectrode
arcing

Trans-boundary layer arcing

Shock waves and shock wave/boundary layer interactions

MHD instabilities (including magnetoaerothermal)

Ionization instability modes

Current streamer formation

Start-up transients, including sequencing of fuel,
oxidizer, and seed valves, secondary injection of fuel,
seed and oxidizer, and lnad circuit switching

Shut-down transients

Perturbations from steady state operation, including steam
plant upsets, load circuit faults, part-load opersaticn
and load iollowing transients

Generator/power conditioning system interactions

Generator end regior losses

Slag layer dynamic phenomena



35. Channel geometry effects, including nonrectangular
cross—-sectional shapes

36. Transverse pressure gradients and nonuniformities

37. Secondary flows induced by MiiD or viscous effects

38. Fundamental combustion processes, including particle
burnout, particle trajectories, liquid leyer formation
on combustor walls, seed mixing and uniformity, pressure
loss, etc.

39. Alfvén waves

40. Hartmann flow

41. Nucleation effects

42. Electron capture by particles

43. Radiative ionization and recombination

44. Nonequilibrium radiation and coherent radiation

45. Bffects of nonideal mixtures in condensed phase chemistry

46. "Faraday Catastrophe” load faults

47. Three-dimensional and time-dependent induced magnetic
field effects

48. Ion slip effects

49. Nonideal plasma effects

50. Combustor-generated inlet swirl

The modules or subprograms describing these and other

processes can be coupled in a variety of ways, depending upon
the desired focus of a given calculation.

Detailed descriptions of the formulations, solutions,
and applications of the appropriate STD/MHD codes are contained
in Ref. [2-1] through [2-5]. A capsule description of each of
the TRANSIENT, Q3D, PROPERTIES, FIN, INLET, BONDLAY, and
GRAPHICS code families follows.

Code Family: TRANSIENT

Time-dependent magnetohydrodynamics, plasmadynamics, and
compressible gasdynamics for internal flows with MHD
power extraction and body forces. Comprehensive code
family accounts for two~dimensional effects, wall effects
(heat transfer and friction) and kinetics. Applicable to
MHD power systems, gas—dynamic lasers, and other high
temperature flow systems in which start-up, shutdown or
unsteady operation are important. TRANDEE is one of the
specialized codes within this family. The User's Guide to
this code is available, Ref. [2-3].



Code Family: Q3D

Quasi-three-dimensional, steady MHD, electrical, and fluid
mechanical effects in equilibrium (combustion-~driven) or
nonequilibrium (noble gas) MHD flow trains (combustor,
nozzle, channel, and diffuser) of arbitrary cross section.
This code family includes various cross sectional MHD
generator performance calculations which may be coupled to
predict three dimensional performance and behavior. While
finite segmentation options exist, they were not utilized
in the performance of the Q3D calculations described in
this report. QUE3DEE is one of the specialized codes
within this family. A User's Guide is available for this
code, Ref. [2-4}.

Code Family: PROPERTIES

Generalized transport and thermodynamic properties of
equilibrium combustion flames. These codes consider
reactions between more than 500 gas, liquid, or solid
state species. Flexible inputs include initial fuel,
oxidizer, and additive (seed, ash, etc.) compositions and
states. Outputs include electrical and fluid transport
coefficients and all thermodynamic state variables.

Code Family: FIN

Two~dimensionz]l MHD electrode solutions with electron
energy relaxation, electron ionization/recombination
kinetics, effects of slag coatings, and finite electrode/
insulator width. Codes in this family apply to the region
of the MHD generator channel which may be considered
"periodic"; i.e., regions in which changes from electrode
pair to adjacent electrode pair are essentially
negligible.

Code Family: BONDLAY

Integral boundary layer models with MHD body forces, Joule
dissipation, wall roughness effects.



Code Family: GRAPHICS

General and customized graphics packages for
post-processing raw data files generated by other code
families. Includes codes for contour generation and three
dimensional projection of bivariate data.

Code Family: INLET

Codes in this family solve the two- dimensional electrical
part of the MHD problem in the part of the MHD gcnerator
which cannot be considered periodic. These codes take
given gasdynamic variables and compute the two dimensional
distributions of electron temperature, Ohm's law coeffi-
cients, current density, and electric field in the end
regions of an MHD channel.
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3.0 HPDE DATA ANALYSIS AND INTERPRETATION

STD Research Corporation has performed calculations to
survey the power producing characteristics of the AEDC/HPDE
over the nominal operating range as well as calculations to
simulate actual experiments which have occurred to date. The
results of these studies are discussed in this section.

3.1 Channel Characterization

Subsection 3.1.1 describes the physical parameters
used for simulations of the nominal operation of the AEDC/HPDE.
Descriptions of operating parameters which differed from these
nominal conditions during actual tests are provided 1in
subsequen* subsections.

3.1.1 AEDC/HPDE - Nominal Conditions

The flow train of the Arnold Engineering Development
Center High Performance Demonstration Experiment (AEDC/HPDE)
consists of a combustor, transition nozzle, electrode test
section, generator, generator/diffuser adapter section and
diffuser. Pig. 3-1 is a schematic of the final, 'as-built"
internal dimensions of the device (axial locations are
referenced from the combustor bsck plate).

3.1.1.1 Geometry
The combustor for the HPDE is based on renovation and
modification of what was formerly the LORHO burner and is

described in [3-1] through [3-4]. For the purpose of
performance analysis, the combustor may be charscterized as a

12



0.610 m diameter cylinder of 1.195 m length. The transition
nozzle 1is a three-dimensional contraction from the 0.605 m
diameter burner to a 0.264 m by 0.489 m rectangular electrode
test section. The electrode test section is of no consequence
during the MHD experiments and may be regarded simply as an
unloaded portion of the generator. The MHD generator channel
is constructed in 5 sections, the dimensions of which are shown
in Fig. 3-1. In the STD computer codes the x-axis is located
at the center of the channel cros:s-section. The y-axis is in
the electrode-to-electrode direction with the positive
direction being from cathode toward anode. The z-axis is in
the sidewall—-to-sidewall direction. The magnetic field vector
is in the positive z direction. The channel height, width,
area, and aspect ratio are plotted as a function of the axial
coordinate in Fig. 3-2.

There are 485 pairs of electrically accessible
electrodes, of which only 417 pairs spanning 7.15 m in the
interior of the channel are loaded under the nominal operating
load schedule.

The electrodes are electrically isolated from each
otucr with refractory, and each electrode spans the transverse
¢*stance across the channel. The gap between electrodes is
1.52 m throughout the channel [3-5]. Graphite caps are
attached to each electrode pair to allow operation at a high
surface temperature.

The "pegwall" insulator walls are composed of 0.019
square conducting pegs which are spaced 1.58 mm apart and are
insulated with refractory material [3-4].

The Zenerator is fitted (via an adapter section) with

a plane-walled diffuser with parallel sidewalls (extensions of
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the electrode walls) and diverging top and bottom walls. The
mechanical design [3-1] of the diffuser allows for setting the
upper and lower walls at any angle between 0 and 30. Experi-
ments to date have fixed the divergence angle at 1° on both
walls.

3.1.1.2 Magnetic Field

The magnet for the MHD High Performaace Demonstration
Experiment is designed to provide (at 27 MW and 16 kA) a peak
field of 6 7T when _ulsed from 77 K (LN2) and 5.5 T when
operated (ontinuously water-cooled. The magnet bore is 0.89 m
wide by 0.71 m high at the entrance, 1.4 m wide by :.17 m high
at the exit, ~und the poles are 7.1 m long. The total length of
the magnet is a 9.16 m. [3-6]

Fig. 3-3 shows the agreement between tne predicted and
measured magnetic field distributions. 8TD simulaivions of the
AEDC/HPDE experiments to date have used, as inp..t for the field
distribution, the MEA design values [3]-13]. These values are
scaled by the measurement of Hall proke H9 for each particular
run under analysis.

3.1.1.3 Loading

The nominal loading scheme for the HPDE generator is
in a Faraday configuration. Tor purposes of performance survey
calculations, the load distribution is given as follows [3-5].

x(m) RL (ohm-m)
2.735 { x £ 8.875 0.8
R.875 < x € 9.885 1.6
where x is measured from the burner backplate. The electrode
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spacing is given in [3-7} and is included in Table 3-1 for
convenience.

3.1.1.4 VWorking Fluid

The working fluid for the channel is composed of the
products of the combustion of toluene and Oxygen with nitrogen
arluent. The seed is potassium hydroxide dissolved in
methanol. The fuel/seed rixture is injected into the com' .stor
as a liquid at ambient temperature. The nominal mass flow
rates for the facility are 45 kg/s for operation between 2 and
3 T, 50 kg/s for opcration between 3 and 4 T, and 53 to 54 kg/s
for operation at 4 T and greater [3-5]. The nominal value for
both the NZ/OZ mole ratio and the stoichiometry is 1.0. Table
3-2 contains a list of the flow rates which describe the
working fluid under nominal conditions (2 T, 45 kg/s).

3.1.1.5 ¥%all Conditions

The nominal values for the surface temperatures on
both the insulating and electrode walls are shown in Fig. 3-4.
These temperatures were determined by a one-dimensional
‘ransient heating analysis performed by AEDC personnel and
described in [3-7]. For all calculations the duration of
heating was taken to be 15 s, after which there was a cool-down
cycle during wtich atmospheric air is forced through the
channe:. The temperature history for each wall is calculated
at the channel inlet and exit, and the distribution of the wall
temperatures along the channel were obtained by assuming a
linear variation between these locations (for values corre-
sponding to t = 15 s). The combustor operates with a wall
temperature of 450 K, and the rorghness of all walls |is
charactrrized by an equivalent sand roughness of 3 mm in the

15



electrode test section and channel, and as "smooth" in the
combustor, nozzle, and diffuser [3-5].

3.1.1.6 Channel Inlet Conditioas

The character of the flow as it enters the MHD
generator is not completely defined by the experimental data.
Ideally, one would prefer to know with confidence the complete
distribution of mass, momentum, apnd energy at the inlet plane.
Available data are sparse due to the experimental difficulty of
obtaining these measurements. The heat loss to the water-
cooled components of the burmer is on the order of 3% [3-4].
The total heat loss to all components upstream of the first
loaded electrode was calculated, as described in Section
3.1.2.5, by STD Research; the value of 5.7% was used for the
nominal case. The original design calculations based on the
nominal operating conditions indicated that the boundary layer
thickness is approximateiy 12 mm at the inlet plane.

3.1.1.7 Other Conditions and Assumptions

The generator exit condition is determined by the fact
th.t the HPDE ilow train exhausts to the atmosphere. Hence,
the static pressure in the exit plane of the diffuser |is
assumed to have the nominal value of one atmosphere.

3.1.2 AEDC/HPDE - Experimental Conditions
The HPDE experimental conditions are chosen according
to experience learned from each successive test and a test plan

which includes variation of the key test parameters. Conse-
quently, the HPDE runs have not, to date, operated at exactly
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the "nominal" conditions pr .ented in the previous section.
Post-experimental data analysis is the only way to determine
the operating point of a particular experiment. It is the
purpose of this section to set forch as completely as possible,
using the data at hand, the experimental conditions under which
the AEDC/HPDE has actually operated to this date.

3.1.2.1 Magnetic Field

During power producing runs the magnetic field
strength is monitored via Hall probes, the locations of whbhich
are shown in Fig. 3-5. All probes are located on the floor of
the magnet bore. A measure of the variation of the magnetic
field in the interelectrode direction is provided by probes H2A
and H3A which are displaced above and below the midline (y = 0)
by 0.014 m. The location of these probes with respect to the
design magnetic field distribution is shown in Fig. 3-3. Note
that they are near the peak magnetic field region. For the
purpose of computer simulation of the experiments, the measured
values of probes H2A and H3A are averaged over the time
interval of interest. The resulting value of the magnetic
field is then used to scale the design curve to yield the
complete magnetic field distribution ror the experiment under
consideration. Table 3-3 contains the values of the magnetic
field so obtained for the AEDC experiments to date.

3.1.2.2 Loading

The 1load bank 1is a series of liquid rheostats
consisting of polypropylene buckets, each containing two copper

plates. The plate spacing can be varied to achieve a
resistance range from 10 to 60 ohms. Table 3-4 contains the
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resistance of each electroae pair as set by AEDC personnel
(3-8}, [3-9]}. These values have been normalized by a water
conductivity of 150 uS/cm. Note that the reference resistances
for electrode pairs numbered greater than 357 have been changed
for runs subsequent to 006-007 and also that electrode pairs
401 and above are open circuited. Table 53-35 contains the water
conductivity during the ruans for all runs to date. To deter-
mine the resistance schedule for any particular run, the values
from Tables 3-4 and 3-5 must be used in the following equation:

R = Rref (150/K

run run)

The product of the above load resistance and the electrode
pitch (width from Table 3-1 plus the insulator thickness of
1.52 mm) then uniquely specifies the loading of the channel in
the Faraday configuration. It should be noted here that
comparisons of the 1load resistances determined in the above
manner and those determined from the voltages-current
characteristics of the experimental data are not very good for
Run 006-008, but were better for subsequent runs. Further
discussion on this point is contained in Secti<as 3.6 and 3.7.

3.1.2.3 VWorking Fluid

Table 3-6 contains a list of the flow rates of the
various constituents of the working fluid for two typical
experimental runs (006-008 and 006-014). These flow rate data
are input to codes from the STD THERMODYNAMICS family to
generate a thermodynamic data base and other data. Input flow
rates for oxidizer, seed, and fuel were obtained by averaging
the experimental data over the time period 4.54 < T, < 5.21 s
for Run 006-014 and 9.5 < T, < 10.2 s for Run 006-008.
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3.1.2.4 Wall Cornditions

Fig. 3-6 illustrates the results of a transient
heating analysis performed by AEDC personnel for the electrode
surface including the 1/2" graphite caps [3-11]). Experimental
data have indicated that the heat trarsfer
rates on the electrode surfaces at the inlet flange and at a
statioa 5.59 m from the inlet flange are 450 Btu/ftz-sec and
100 Btu/ftz-sec, respectively. Several of the power producing
runs to date have yielded their best data about 5 secornds intc
the run. Reading the curves of Fig. 3-6 (at t = 5 s) for the
heat transfer rates mentioned above yields electrode surface
temperatures of 1130 K and 540 K at the inlet flange and a
point £.59 m downstream, respectively. For the purpose of
performance calculations, the complete temperature distribution
is assumed to be linear along the channel between these two
points. These data were the best available at the time these
simulations were performed.

All simulations beginning with the simulations of Run
006-014 utilized the temperature profile described in the above
paragraph. Simulations of runs prior to 006-014, which were
carried out before this information became available, utilized
the nominal temperature distribution, Fig. 3-4.

As the HPDE runs were analyzed, better wall
temperature data became available. A further revision to the
electrode surface temperatures has been published in [3-12] and
is reproduced in Fig. 3.7. This estimate is based on a two-
dimensional, fully viscous calculation including the effects of
pressure gradient.
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3.1.2.5 Channel Inlet Conditions

To determine the boundary layer thickness at the first
loaded electrode, a series of computations have been made with
a code from the STD BONDLAY PFamily. Several runs were made
assuming various values for the equivalent sand roughness in
the components upstream of the channel w>ch the following
results at the first loaded electrode:

Sand Roughness Height 6(electrode wall) ©&(sidewall)

_(mm) (mm) (mm)
0.0 (smooth) 17.6 19.3
0.1 24.0
1.0 34.9 38.4
2.0 40.0 44.3
3.0 43.6 48.4

These calculations also predict that the total
enthalpy loss up to the first loaded electrode ranges between
approximately 5.7% for the smooth wall calculation to
approximately 7.2% for the 3.0 mm roughness calculation. The
latter value compares well with the datum of 7.5% measured by
AEDC [3-12].



density, integrated power output, and 1nterelectrode voltages
are determiaed from tne primary measurements and other
geometrical data.

3.2.3 STD Interface with HPDE Data Systems

The HPBE data acquisition system data are processed by
codes from the STD GRAPHICS family and plotted as a function of
both space and time. These codes allow the data and
computational results to be displayed with any degree ot time
and space resolution necessary, contingent of course, on the
ultimate density of the data, to examine events of importance.
Fig. 3-8 is illustrative of the manner in which critical events
can be followed throughout their lifetime using this type of
display.

A plot of the data acquisition system data for a typical
AEDC rumn (006-008) is given in Fig. 3-9. On this figure the
time coordinate increases from left-to-right and starts at T2 =
0 (T2 is the time ir seconds from combustor ignition). Also,
the axial distance along the flow traian 1is plotted from
top-to-bottom. On this figure, the value of the data is
plotted vertically above the corresponding point in the
time-distance coordinate plane. It is possible to define and
plot subsets or "windows" in the data as small as necessary to
resolve an event of interest if the data are available. Such
options have as yeti gone unused for the HPDE data due to the
relative coarseness of the experimental data in space and time.
Much higher data rates will be required t» resolve the space-
time variation of critical phenomena such as MHD instability
modes, electrical transients, etc.



3.3 Steady State Performance at the Nominal Operating
Conditions

Prior to receiving the experimentaul data from the
initial powered runs, a study was conducted in order to
determine the probable performance range of the AEDC generator

during the first phase of testing. The nominal operating
conditions were defined by AEDC personnel and are documented in
Section 3.1.1. During these computations the peak magnetic

field was varied between 2.0 and 4.0 T and the mean flow rate
was varied between 45 and 54 kg/s. Due to the unavailability
of sophisticated FIN or ARRAY calculations in the early stages
of te HPDE analysis, a variety of wall condition models were
employed in Q3D for the initial calulations of the iPDE
performance under the nominal operating conditions.

With the arc mode current transfer option, the current
transverse through the boundary layer flows with negligible
loss when the local electric field exceedes a c¢ritical value.
Based on previous work, the critical value used for these
computations is -12 kV/m. For the diffuse current mode option,
the current transverse through the boundary layer is

computationally forced to be uniform across the width and
length of the electrodes.

Figs. 3-10 and 3-11 present the summary of the predicted
performance of the HPDE at the nominal operating conditions for
2 T, 3 T, and 4 T operation. Performance predictions were
carried out as a function of mass flow rate with the STD
TRANSIENT family of codes in the quasi-steady mode of
operation. The predicted values fall within the bounds of
uncertainty defined by a series of more sophisticated,
quasi-three~dimensional calculations with the Q3D family of
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codes. Depending upon the relative importance of sced
condensation and current transport mechanisms, the predicted
power output was found to vary between 4.28 to 15.3 MW at 2 T
and between 25.96 to 39.76 at 4 T. Fig. 3-11 indicates that
the experiment should not be expected to obtain 15% enthalpy
extraction at 4 T and the nominal operating conditions.

Figs. 3-12 to 3-24 are results of a calculation,
COBQFXRIHU, with a code from the Q3D family for the 2 T nominal
condition (Point A (2 T) imn Fig. 3~10). These are axial
profiles of certain key variables which are output from the
calculation. The origin for the axial coordinate in these
figures is located at the inlet flange (end of electrode test
section in Fig. 3-1). Note how the sectioning in the channel
construction (see Fig. 3-1) is directly reflected in the Mach
number and velocity distribution of Fig. 3-13. The load factor
decreases from 0.8 to 0.64 over the active channel (Fig. 3-15).
Fig. 3-16 shows that approximately 15.3 MW are produced at the
nominal 2 T conditions at an enthalpy extraction ratio of
0.059. Maximum normal current densities of approximately 0.5
A/cm2 and maximum Hall fields c¢? approximately 1.8 kV/m ar2
present during operation as shown by Fig. 3-17. Maximum
voltage drops* of approximately 750 V occur in the rear end of
the generator (Fig. 3-21).

*Except as otherwise noted, voltage drops in this report are
defined as the difference between the Faraday voltage and the
voltage difference across the channel if the centerline
transverse voltage gradient were extrapolated to the
electrodes.
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3.4 Hall Voltage Overshoots

The mechanism for the occurrence of Hall field
overshoots during start-up and shutdown was described in Vol.
I, pp. 5-12 to 5-16 of the STD Research Corporation report
FE2243-17 under contract EX-76-C-01-2243 (May 1978). During
periods in which the channel is operating at design mass flow
rates, but is unseeded or slightly seeded, high velocities are
experienced in the channel. In the presence of the magnetic
field, B, these higher-than-design velocities can lead to much
higher-than-desien Hall fields:

Ex = BUB(1-K) /G
Taking note that p ~ B/p, we find that (1) Ex ~ Bz, and (2)
every factor in the above expression (except the nonuniformity
factor G) changes in the direction to increase the magnitude of

Ex as the velocity increases. Such unseeded or slightly seeded
conditions are present during the start-up and chutdown
sequences because the seed valve 1is opened last and closed

first.

In the calculations described in the forementioned
repnort, Hall fields exceeding 20 kV/m locally were observed
at the nominal 6 T condition during the start-up and shutdown
events, and Hall fields exceeding 4 kV/m extended over more
than half the channel. Scaling these fields by the square of
the ratio of magnetic flux density in Run 006-008 to the value
used in the previous study (2.35 T/6 T)2, we might expect Hall
fields of the order of 3 kV/m over the entire channel due to
the increased extent of the supersonic flow region in AEDC/HPDE
Run 006-008 (see Section 3.6 for a complete analysis of this
run). Thus, instantaneous total Hall voltages up to 25 kV
might be expected in the 006-008 start-up and shutdown events.
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Fig. 3-25 is a plot of the anode-to-ground voltage for
electrode pair number 336 during AEDC/HPDE Run 006-008 ip which
the diffuser became grounded during the run. Figs. 3-26 and
3-27 show the anode and cathode voltages at all instrumented
electrodes (for the Data Acquisition System) over the entire
duration of the run. It is clear that the overvoltages
occurred throughout the channel. The reduced data acquisition
system data, which are presented in all plots of data
acquisition systems in this report, are averages over five
acquisitions in order to filter the noise. Therefore, while
voltages as high as 25 kV are not displayed in these figures,
the high standard deviations associated with the peaks in the
Fig. 3~25 data imply higher instantaneous voltages than the
averaged values depicted in Fig. 3-25.

The sequence of events that took place during Run
006-008 are reasonably well understood and are depicted
schematically in Fig. 3-28. This figure presents the actual
measured diffuser-to-ground voltage along with a curve which
represents the ideal generator voltage which would occur _f
there had not been an external arc from the diffuser to ground.
Due to an approximate 2 s delay between fuel injection and seed
injection into the combustor flow, sufficient time is available
to establish steady, unseeded combustion flow in the MHD
channel during start-up. If no electrical faults develop, the
Hall voltage would have reached 25 kV as discussed above. This
is indicated by the solid trace in Fig. 3-28. Instead, an
electrical breakdown from diffuser to ground developed as the
Hall voltage increased in Run 006-008. The exact breakxdown
vceltage is not known from the experimental data due to the long
averaging times of the data acquisition system and panel meter
data. If sufficient informatira about the geometrical
configuration of the region near the electri.al breakdown were
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known, the air breakdown voltage could be calculated. This is
not a critical parameter because the breakdown problem at this
location has since been corrected.

During the period between the electrical breakdown and
the onset of seed flow to the ccmbustor, the external arc is
sustained by passage of a modest amount of current through the
plasma fro. the combustor to the diffuser breakdown location.
Independent assessments of the electrical conductivity in the
plasma during the unseeded period yield an estimate of 0.03 S/m
+ 0.02 S/m. These estimates were arrived at by (1) examination
of the STD THERMOODYNAMICS code family predictions for the
electrical conductivity of the unseeded combustion flame, and
(2) an analysis of the Faraday currert and voltage measurements

during the unseeded portion of Run 006-008 using calculated
values of the gas velocity.

By assuming that the electrical conductivity is rela-
tively constant in tne generator during the unsecded portion of
the run, by assuming that the conductivity 1is relatively
uniform over the channel cross-section, and by taking note that
the measured voltage to ground of anode 1 and anode 10 differ
by 1000 volts (the corresponding difference on the cathode side
is 1200 volts), it s possible to estimate a total current flow
during the unseeded period of approximately 10 + 5 A. Such a
"trickle" of current would be sufficient to maintain the
external arc from the diffuser to ground.

As the seed first enters the combustor, the bulk conduc-
tivity of the plasma increases, and the current available to
the external arc increases substantially. The steady~-state
current in the external arc, corresponding to the time when the
seed flow has reached its steady-state value, is estimated from
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Q3D computations to be in excess of 850 A, and possibly as high
as 1200 A (see Section 3.6). The bur:ing voltage of the
external arc decreases as the current increases, according to
the standard V-I characteristic of electrical arcs. During the
seed-on transient, the voltages to ground of the loaded elec-
trodes in the generator undergo a voltage transient which is
indicated in Figs. 3-25 to 3-27. Unlike these floating
electrode circuits, the diffuser voltage is fixed by the ar:
burning characteristics; and, consequently, the diffuser does
not experience this '"seed-on" transient.

During the HPDE shutdown sequence, the seed vaive is
shut prior to fuel cut-off. As the seed is purged from the
channel, the conductivity required to sustain the high current
discharge gradually diminishes, and the d.ffuser voltage
follows the V-1 characteristics of the external discharge.
Were there are no electrical faults present, the Hall voitage
would again rise to approximately 25 kV. However, the burning
voltage of the arc rises to some lower value, and then the
external diffuser-to-ground discharge is extinguished. When
the discharge is extinguished, the diffuser-to-ground voltage
rises but is intercepted by the voltage trace which would be
present without external electrical discharges. Tais trace
falls as the fuel supply to the combustor diminishes and
combustion ceases.

The practical lesson from all this: over-voltage
protection for many tens of thousands of volts rather than
hundreds or thousands of volts should be provided between power
train and ground.
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3.5 Shock Location

The range of possible mass flow rates and magnetic field
strengths obtained in .he AEDC/HPDE facility allow for
operation in both the supersonic aad subsonic flow regimes.
The nominal operating conditions for the initial testing phase
(described in Section 3.1.1) were designed to insure operation
in the supersonic flow regime. Ideally, the shdcck-down to
subsonic flow would occur dJowustream of the active channel.
While surveying the nominal operating conditions with a code
from the TRANSIENT family, particular attention was given to
following the position of the shock as it -aried with mass flow
rate and magnetic field strength.

Figs. 3-29 and 3-30 are rapresentative of the results of
this study at the 2 T nominal conditiun. The origin of the
axial coordinate for these plots is the burner backplate
(channel exit is at 9.8t m). Fig. 3-31 summarizes the
predicted location of the normal shock during operation at 2 T,
3 T, and 4 T with the nominal operating conditions and various
mass flow rates. It is seen from these figures that the shock
is predicted to 1lie outside the active portion of the
generator, except during 4 T operation. The 4 T shock can be
pushed out of the generator by a small increase of the mass
flow rate within the facility limits. Also s vn are the shock
locations predicted for unseeded operation for the nominal N/O
ratio and for a combustion mixture, designated N/O0 = 1.25,
which simulates the off-desigr conditions for the first hot
flow test of the generator. The data from this test show { a
pressure disturbence indicative of a shock system at
approximately 9.1 m. The STD calculation based on the best
available interpretation of experiment:l conditions predi-cs a
normal shock to exist 1.6 m downstream of the pressure anomaly.
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This is consistent with the empirically determined observation
in supersonic flows that the duct stalls 2-3 diameters upstream
of a normal shock computed by one-dimensionsl gas dynamics.

3.6 Analysis of Run 006-008

During start-up of Run 006-008 an electrical breakdown
from diffuser to ground developed as the Hall voltage increased.
Calcul ons were initiated with codes fron the Q3D family to
determine the leakage current from the diffuser to ground for
this run and the associated power loss due to operating with the
grounded diffuser. An input data set, which contains magnetic
field and load resiotance distributions and thermodynamic data
from the AEDC Data Package [3-9], was constructed for use in
these computations. These inputs are discussed more fully in
Section 3.1.2.

It should be remarked here that this simulation was per-
formed prior to receiving the revised wall temperature scheduiles
of PFigs. 3-6 or 3-7 and as such the calculaticon was done using
the nominal electrode wall temperature schedule of Fig. 3~-4. 1In
addition, the assumption of smooth walls upstream of the gerera-
tor was made according toc the nominal conditionms. Subsequent
simulations of the Rur 005-014 data suggest that the upstream
conditions are more accurately characterized by rough walls.

As a first approximation to simulate the effects of the
grounded diffuser, a series of Q3D computations was performed in
which a constant value of Ix is assumed to exist at each cross-
section of the generator. The actual leakage current would be
determined as that current which yields distributions of normal
current density, power, Faraday voltage, and Hall potential most
closely resembling those measured during the experiment.
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At the time these calculations were performed, the data
for the electrode potentials during the run appeared to contain
a number of uncertainties. The data from the meter panel and
data acquisition systems were each incomplete. Depending on how
the data were combined, an estimate fcr the Hall potential
difference across the active channel betveen 1100-1600 V might
be obtained. In addition, calculatious to check the load
resistance at several electrode pairs indicated a few
discrepancies between the data from the two systems. Many of
the load resistances inferred from the measured currents and
voltages differ substantially, particularly at the rear end of
the generator, from the values used in the simulations. These
input values were provided to STD on the basis of separate
measurements of load resistance prior to the run and are
documented in Section 3.1.2.

According to AEDC persornel [3-13] there were two causes
of data irconsistencies in Rua 006-008:

(1) The current measurements by the panel
meters are subject to a large uncertainty
because currents of the order of 24 A are
t.ing measured on a 200 A (full-scale) meter,
resulting in approximately a + 5 A uncertainty
ir the reading. -

(2) The current transductors used in the data
acquisition system were probably measuring
such low currents as to be in a nonlinear
range of tL> probe characteristics.

It is important to note that at the time of the STD Run
006-008 simulations, the HPDE might be considered to be in a
'shake-down'" mode in which the data acquisition and reduction
procedures were beirg perfected. Some of the data utilized in
this simulation have been confirmed by AEDC to be inconsisteat.
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These inconsistencies have been corrected by AEDC since the time
of the STD simulations. When the data acquisition system cata
and the meter panel data for Run 006-008 were refined by AEDC,
better agreement with the load resistances was obtaiaed.

Two Q3D runs were made in an attempt to simulate this
experiment: CMSIPUFIKW with I, = 0 and CMSIQBEIKW with I_ = 850
A. The axial variation of the gasdynamic, plasma, and
electrical parameters from CMSIPUFIKW are given in Figs. 3-32
through 3-43. The axial variation of these same parameters
from computation CMSIQBEIKW are given in Figs. 3-44 through
3-55.

Comparison of the axial variations of the gasdynamic
parameters presented in Figs. 3-32 and 3-44 indicates that the
values are nearly the same with a slightly higher velocity,
Mach number, stagnation temperature, and stagnation fressure
from CMSIQBEIKW than for CMSIPUFIKW. Comparison of the axial
variation of the plasma properties in Figs. 3-33 and 3-45
indicates that the Hall parameter is larger at the exit for
CMSIQBEIKW. As seen by comparison of Figs. 3-35 and 3-47, the
Faraday load factor and electrical conversion efficiency are
not identical when there is 2a net Ix. For CMSIQBEIKW, the
Faraday load factor decreases to about 0.4 at the back end of
the channel.

Due to the large value of Ix and power dissipation in
the arc from diffuser to ground, the values of the power
extraction parameters are much smaller for CMSIQBEIKW, Fig.
3-48, than for CMSIPUFIKW, Pig. 3-36. The axial variations of
the electrical field variables in Figs. 3-37 and 3-49 indicate
that the net Ix causes the Hall field to be negative at the
front and back ends of the channel. In addition, the Faraday
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voltage and normal current density are lower with a net Ix.
Comparison of the axial variation of the electrode potential
from Figs. 3-38 and 3-50 shows the effects of a ne: Ix: the
potentials decrease at the front end of the channel (due to

negative Ex); potentials are smaller throughout the channel;
and the differences from cathode to anode (Faraday voltage) are

smaller throughout the channel.

Comparison of the electrode voltage drops in Figs. 3-39
and 3-51 indicates that the voltage drops are the same at the
entrance, but peak at about a 20% lower value for CMIQBEIKW.
Comparison of the electrode boundary layer parameters on Figs.
3-41 and 3-53 indicate that the net Ix causes an increase in
the anode shape factor and a decrease in the cathode shape
factor. Comparison of the sidewall boundary layer parameters
on Figs. 3-42 and 3-54 indicates that the sidewall boundary,
displacement, momentum, and enthalpy thicknesses are all
greater with a net Ix‘

Computation CMSIPUFIKW simulated the conditions which
might have been obtained in the HPDE if the external short from
diffuser to ground had not occurred. Computation CMSIQBEIKW is
a first approximation to simulate the conditionus of Run 006-008
at the time corresponding to T2 of approximately 9.0 s. This
computation is only a first approximation because the actual Ix
caused by the shorted diffuser is not known. Therefore,
precise correspondence between calculated and measured values
cannot be expected.

Fig. 3~-56 illustrates the static pressure distribution,
both measured and predicted, in the active generator. The
excellent agreement of theory and experiment indicates that
there were no large-scale anomalous fluid mechanical phenomena
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present in the channel during this portion of the rum, and
suggest that the differences between the experimental data and
the computations described below may be mainly electrical in
nature.

The measured and predicted potential of the cathode are
depicted in Fig. 3-57. The experimental distribution from the
AEDC meter panel data system was obtained from an AEDC plot,
which is given in Fig. 3-58. It should be remarked here that
the meter data for the potential is unreliable over the first
10 instrumented electrodes, since negative potentials could not
bc accurately measured at the time of the run. Also plotted in
F:g. 3-57 is the cathode potential recorded by the data
acquisition system. Both experimental distributions have been
plotted with an offset from the recorded values such that the
potential at electrode no. 168 is zero.

The Q3D calculationrs as originally planned would
determine the constant value of Ix in the generator such that
the Hall potential difference computed from entrance to exit
compared well with the measured values. The unreliability of
the meter data at ‘he inlet and the sparsity of the data from
the acquisition system at the exit prevents a precise
determination of the potential difference. Simultaneous
consideration of both sets of data indicate a Hall potential
difference of about 1200 V as a reasonable target (see Fig.
3-57). The Q3D calculation CMSIQBEIKW was made with I, = 850
A, nominal wall temperatures, and diffuse current transfer.
The predicted Hail potential shows good qualitative agreement
with the data. Further computations at an increased Ix would
probably lower the potential difference to th. larget value.



Figs. 3-59, 3-60 and 3-61 are plots of the experimental
and the calculated distributions of normal current density,
Faraday voltage, and power respectively. The meter data
distributions were obtained from an AEDC figure, which is
reproduced as Fig. 3-62, while those for the data acquisition
system were taken from [3-9]. Again, there is good qualitative
agreement between theory and experiment for these quantities.
Clearly, the theory and experiment lack quantitative agreement,
especially in the rear-end region of the generator. Possible
causes of this lack of agreement are (1) failure to match Ix’
(2) unreliable electrical data, or (3) the presence of
phenomena not revealed by the present computation.

Certainly, some of the discrepancy is expected since the
Hall potential comparison of Fig. 3-57 indicates that a higher
Ix should be used in the computation. in addition, there are
discrepancies in the experimental data recorded by the two
measuring systems. Perhaps this is best illustrated ir the
current and voltage graphs of Figs. 3-59 and 3-60. While the
voltage measurements at T2 = 8 s agree fairly well, the current
distributions vary differently along the channel. In addition
to the fact that the data is in some instances perhaps not yet
well understood, the vccurrence of additional phenomena such as
internal shorting and current loops (resulting in nonconstant
Ix) in the generator cannot be excluded. STD computation
CMSIQBEIKW utilized a leakage current of I, = 850 A to predict
a Hall potential difference of approximately 1400 V. An
additional estimate for the magnitude of Ix can be obta- .ed
from the equation

= Vo
I, 'y L

35



where L is the length over which the short occcurs and A is the
cross sectional area occupied by the current. At the back end
of the channel a typical cross sectional area is 0.8 m2. The
measurements from the data acquisition system at T2 = 8 s
indicate an anode to ground potential (V) of approximately 1400
V at 6.22 m from the first 1loaded electrode. The aaial
distance from this station to the diffuser (grounded) is 2.67
m. STD computations yield an electrical conductivity ( ) in
this region of approximately 3 S/m. Assuming the Jeakage
current fills the entire cross-sectional area of the channel,
application of Eq. (1) yields Ix = 1300 A. Similarly, at the
front end of the generator typical values of the cross-
2 and 11 S/m,
respectively. The experimental data at T2 = 8 s indicates an
anode to ground potential of approximately 400 V at 1.82 m from
the channel inlet. Using these values, application of Eq. (1)
predicts a leakage current of 340 A.

sectional area and gas conductivity are 0.14 m

To obtain a valid value of the leakage current and its
effects, it is necessary to take into account the structure and
location of the 1leakage current with sophisticated models.
Although the bulk conductivity -~veraging presented in the
previous paragraph is crude, the order of magnitude of the
leakage current may be estimated.

3.7 Steady State Q3D Simulation of Run 006-014

AEDC Run 006-014 was a powered run of 8 seconds duration
which arced in the breech at approximately 5.3 s after the seed
entered the channei. The experimental data show two distinct
performance regimes (see Figs. 3-63 to 3-72)

(1) A period between 4.5 ( T, < 5.21 s in which
the channel is ungrounded and the data \is
relatively steady in time.
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(2) A period between 5.5 < T: € 6.5 s in which
the channel is operating in a grounded condition.

The Q3D simulations performed under this contract have
pertained only to the channel performance when in the
ungrounded condition.

The input data for the Q3D simulations are fully
described in Section 2.1.2. These data were obtained by
averaging the experimental data over the time period 4.54 < T2
£ 5.21 s. The effect of the bleed resistor was accounted for
in the calculation with a constant axial current of 23.54 A.
This value was obtained from the average diffuser-to-ground
voltage (9416 V) and the known resistance of the #12 wire used
as the bleed resistor (400 ohms).

Heat transfer measurements by AEDC personnel have
resulted in a modified electrode surface temperature as shown
in Fig. 3-6. The sparseness of the heat transfer data
prohibits exact specification of the electrode surface
temperature. The Q3D simulations have, at the suggestion of
AEDC personnel, used temperatures corresponding to the 450
Btu/ftz-sec and 50 Btu/ftz-sec curves (at T = 5 s) at the inlet
and exit flanges respectively. A linear variation of
temperature with axial 1location was assumed between these
po ats. The nominal temperature distribution was retained for
the insulating walls (Fig. 3-4).

A list of the nominal load resistances, supplied by

AEDC, is contained in Table 3-7 for runs subsequent to Run
006-006. These values of resistances have been normalized *, a

37



nominal water conductivity factor of 150 ps/cm. Also listed in
Table 3-7 aire the average load resistances obtained from the
experimental data at these locations. To conform as closely as
possible to the experimentally observed values of the load
resistance, and yet retain the detailed electrode-by-electrode
distribution provided by the nominal schedule, STD adjusted the
nominal schedule with a conductivity factor of 159 pus/cm for
these initial <calculatiors. This agrees with the conductivity
values derived from the data acquisition system values for
Faraday voltage divided by Faraday current over the first 168
electrode pairs. The load schedule used in these simulations
appears to be at variance with the experimentally indicated
values in the downstream half of the generator, and the
performance predictions may be expected to be less reliable
toward the aft end of the generator. A plot of input 1load
resistance schedule and the resistance as determined by the
experimental data at each instrumented electrode pair is given
in Fig. 3-86.

Three Q3D calculations have been made during the
theoretical simulation of Run 006-014:

(1) STD Computation BTAYUYDJBE: assumes all walls
prior to inlet flange can be characterized as
smooth walls. Inlet boundary layer thickness
is 18 mm. Enthalpy 1loss upstream of the
generator inlet flange is 5.7%.

(2) STD Computation CHPQUUUJBQ: assumes roughness
of all walls prior to generator inlet flange
can be characterized by an equivalent sand
roughness of 3 mm. Enathalpy loss upstream of
generator inlet flange increases to 7.2% and
inlet boundary layer thickness increases to 44
mm. (See Section 3.1.2.5).
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(3) STD computation CHPQQFLJDV: Assumes roughness
of all walls prior to generator inlet flange
can be characterized as smooth walls. Inlet
boundary layer thickness is 18 mm. Enthalpy
loss upstream of the generator is increased to
7.2% to account for a 3% combustion
inefficiency due to incomplete droplet-burnout,
as discussed in [3-14]. The chemistry was
maintained the same, however.

Figures 3-74 to 3-89 contain the results of a typical
Run 006-014 simulation calculation (CHPQUUUJBO) in the form of
axial profiles of the key gasdynamic and electrical variables.
Fig. 3-75 shows that the Faraday 1load factor, K, decreases
along the channel from approximately 0.7 to 0.6. Figs. 3-76
and 3-77 show that the interaction parameter based on velocity
and the interaction parameter based on pressure achieve values
at the end of the channel of approximately 2.3 and 0.95
respectively. This interaction is sufficiently high to cause
noticeable electrode boundary layer asymmetries (e.g., the
electrode shape factors in Fig. 3~79) and nearly zero blockage
at the channel exit (Fig. 3-76). Fig. 3-86 shows that the
generator power output under these conditions is approximately
22 Mw. Maximum normal current densities and Hall fields of
approximately 0.7 A/cm2 and 2.0 kV/m respectively exist at
steady-state conditions (Fig. 3-87). Fig. 3-89 indicates that
boundary layer voltage drops in excess of 2000 V may exist at

the end of the generator for this relatively cold wall
operation.

The boundary layer voltage drop measurements are perhaps
not sufficiently refined at the present time to discriminate
between various models of current transport at the walls. The
diffuse discharge model selected for the Q3D simulation of Run
006-014, has yielded voltage drops within the range of
uncertainty of the data and has been approximately confirmed
with the more sophisticated FIN and ARRAY calculations
described in Section 4.5.
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3.8 Steady-State TRANSIENT Simulation of Run 006-014

Under conditions of higher interaction than were
studied with Q3D in the neighborhood of the Run 006-014
operating conditions, the flow will become transonic in the MHD
generator. The Q3D family of codes requires additional
computational resources to iterate on the downstream pressure
condition in transonic or subsonic flows. To economize, the
high interaction cases for the Run 006-014 parametric study
were carried out with the TRANSIENT family of codes, with the
quasi-steady option. The starting point for the TRANSIENT
parametric variations is a simulation of Run 006-014 utilizing
data generated by the Q3D simulationn CHPQUYDJBE to account for
multidimensional phenomena. Figures 3-90 through 3-98 are
plots of the results of a computation, BRCYTRCJEB, with a code
from the TRANSIENT family to simulate AEDC Run 006-014. The
origin of the axial coordinate in these graphs is the burner
backplate. The first loaded electrode is at x = 2.7 m and the
last is at x = 9.4 m (see Fig. 3-90). These calculations were
made for conditions similar to those of CHPQUYDJBE (smooth
walls upstream of generator and 100% efficient combustion),
which were discussed in the previous section.

Most of the key parameters resulting from TRANSIENT
simulations shown in Figures 3-90 through 3-98 are also quite
comparable to the Q3D simulation CHPQUUUJBO, which was
described in the previous section. In particular, Figure 3-96
shows that a maximum current density of 0.685 A/cm2 and a
maximum Hall field of 2.005 kV/m are predicted with the
TRANSIENT code. This compares well with the Jy,max of 0.7
A/cm? and the Ey max Of 2-007 kV/m predicted with Q3D (see Fig.
3-87). Similarly, the exit Mach numbers predicted by TRANSIENT

and Q3D are 1.73 and 1.74, respectively (Figs. 3-78 and 3-91).
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These figures also show the shock is located 10.74 m from the
burner backplate. The total heat loss to the wall predicted by
TRANSIENT is 31.4¢ MW, while that predicted by Q3D is 30.97 MW.
The TRANSIENT calculation yields 23.6 MW for the integrated
power output while the Q3D calculation CHPQUUUJBO predicts 21.3
MW or a difference of approximately 10%. Most of this
discrepancy is due to the pre-generator wall roughness
characterization which was for smooth walls in the TRANSIENT
calculations and for rough walls in CHPQUUUJBO. The power
output from the TRANSIENT calculation is more comparable to the
result of the Q3D simulation CHPQUYDJBE, 24.6 MW.

The simulation of the generator operation with the
TRANS{ENT code is useful because it gives a broader view, if
with slightly less detail, of the entire flow train. It should
be noted that the accuracy of TRANSIENT and the agreement
between results from computations with the TRANSIENT and Q3D
code families 1is due to inputs to TRANSIENT from Q3D
calculations to account for fundamentally multidimensional
phenomena such as wall losses and plasma nonuniformity factors.

This is necessary to ensure the accuracy of any quasi-one-
dimensional calculation.

3.9 Comparisor of Rum 006-014 Measurements with Q3D
Simulations

The res'lts from Q3D computations discussed in Section
3.7 were analyzed and compared to the experimental data from
HPDE Run 006-014. In this section the results of this
comparison are presented with emphasis placed on two Q3D
calculations, CHPQUUUJBO and CHPQQFLJDV. The conditions and
underlying assumptions for these separate computations (see
Section 3.7) are identical except for the following:
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(1) The inlet boundary layer thickness and enthalpy
flux are determined by a smooth wall boundary layer
calculation upstream of the generator for
computation CHPQQFLJDV (rather than rough with 3 mm
equivalent sand roughness assumed in CHPQUUUJBO).

(2) A 3% combustion inefficiency due :o incomplete
droplet-burnout is assumed for computation
CHPQQFLJDV (rather than a 100% efficient combustor
assumed in CHPQUUUJBO).

The experimental data for the static pressure, a primary
measurement of the data acquisition data, during the time after
ignition, 4.1 £ T2 £ 5.2 s is given in Fig. 3-99. The static
pressure is a primary measurement of the data acquisition data.
The axial coordinate in Fig. 3-99 is referenced to the
generator inlet flange. Also given in Fig. 3-99 are the axial
distributions of static pressure from ccmputations CHPQ.UUJBO
and COBQQFLJDV. There 1is excellent agreement between the
experimental and the computed values throughout the channel.

The experimental HPDE meter panel dzta from Run 00 014
at T2 = 4.8 s are compared to the values obtained from
computations CHPQUUUJBO and COBQQFLJDV in Figs. 3-100 through
-~ 111. The axial crordinate in these figures is referenced to
the inlet flange. The Faraday vcitage (Fig. 3-100) and the
current per electrode (Fig. 3-101) are primary measurements of
the meter panel data. The normal current density (Fig. 3-102)
and the integrated power output (Fig. 3-105) are determined
from the primary measurements and other geometrical data. The
computed values from computations CHPQUUUJBO and COBQQFLJDV
fall within the measurement tolerances of the experimental
values. Some local discrepancies of up to 5% are evident, but
it is our Jjudgment that the accuracy of the input data,
especially for load resistance, as well as the + 2% fluctua-
tions in curreant and voltage during the period 4.5 s <« T2 <
5.21 s could explain such differences. As shown in Fig. 3-100,
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the computations tend o underpredict the Faraday voltage in
the front half of the generator. This can b¢ explained by
consideration of the uncertainty of the channel loading.

The difference between the voltage-curient characteri-
stics measured by the two data-gathering systems and the
nominal values is discussed in Sectior 3.7. Th:» calculatec
values of the load resistances from the meter pancvl data yield
values that are typically 10% higher than those computed from
the data acquisition system (see Fig. 3-103). This is
especially true in the latter third of the generator. In
addition, the value of a load resistance computed at a
particular electrode pair can vary 3-5% with time.

A rough calculation, under the assumption that the fluid
properties change only slightly at this rather low interaction
level, indicates that if the downstream load resistance were
matched more accurately, a lower current and a higher Faraday
voltage could be expected, the differences being approximately
3-5%. The integrated power output, shown in Fig. 3-105 would
be relatively unaffected (the difference is estimated “o be
less than 1%) by this adjustmen:t to input load resistance.

The integrated power distribution for the meter panel
data measurements can be regarded as approximate, but better
than the distribution obtained from the data acquisition system
measurements. These points were calculated by numerically
integrating the power through the 1loads for the instrumented
electrode pairs. To obtain a value for the integrated pow:r,
the power was assumed to vary linearly between each set of
instrumented electrodes (10 electrode pairs apart). The
scatter in the power per electrode measured by the meter panel
data, and plotted in Fig. 3-10°, indica’es that such a regular
behavior is probably a weak assumption.
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Computation CHPQUUUJBO simulated a bleed resistor from
the diffuser-to-ground with a net aiaial current o 24 A. The
power digssipated ia this bleed resistor was calculated to be
0.2 MW by JCHPQUUUJBO. This ic less than 1% of the power
produced in the channel.

It should be reemphasized that these preliminary
computations have ar’sumed Jiffuse-mode current transfer. At
te relatively cold electrode surface temperatures indicated by
the experiuwental heat transfer measurements to this point, arc
mode <urrent transfer is a distinct possibility, particularly
on the anodes, and should be¢ considered. This will be
discussed further in Section 4.5 This will be discussed
further in Section 4.5. The reaalts described in Section 4.5
further suggest the possibility of the existence of very small
arcs, particularly on the anodes.

The axial distribution of total electrode voltage drop
frcm computation CHPQUUUJBO is given 1in Fig. 3-106.
Experimental vaiuges of total voltage drop, obtained from the
HPDE program manager, at four axial locations are also given in
this figure. The electrode voltage drops computed by STD
Computation CHPQUUUJBO appear to agree with the measured
voltage drops within the experimental tolerances.

The axial distributions of centerline, cathode, and
anode electrical potential are given in Figs. 3-107, 3-108, and
3-109, respectively. The potentials have been adjusted to set
grouni (0.0 V) at the centerline of the first loaded electrode
pair. There is excellent agreement between the meter panel and
the results of computation CORQQFLJDV. Also given on Fig.
3-109 are the data obtained by the data acquisition system for
the time period 4.1 < Tz £ 5.2 s,
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TABLE 3-1

Channel Electrode Width

Electrode Reference Electrode Width** No. of Electrodes
No. * (m)
=30 to 26 0.0254 57
27 to 58 0.01905 32
59 to 162 0.01588 14
163 to 394 0.0127 232
395 to 444 0.0254 50
445 to 454 0.02223 10

*Electrodes are numbered consecutively upstream and downstream
from elecirode 0 whick is the first electrode connected to a
load.

** The insulater thickness is 1.52 mm between adjacent
electrodes

0-4355



TABLE 3-2

Nominal Flow Rates of Combustion Gases

Component Flow Rate
Fuel 5.649 kg/s
Oxidizer 37.247 kg/s
Seed 2.069 kg/s
N2/O2 1.0
Pilot (084) 0.034 kg/s
Seed Concentration 0.454 kg KOhH/kg C830H

Total enthalpy of combustion gases (no losses) 271.7 MW

Specific enthaipy of combustion gases 6.04 MJ/kg (adiabatic
conditions)

Ttlame (6 atm) = 3021 K

0-4356
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TABLE 3-3

Nominal Magnetic Field Used for AEDC Simulations

(B(H2A) + B(H3A),,

Run no. ) Time Interval Ref.

006-006 1.537 4.5 (T, < 7.5 [3-8]
006-008 2.327 9.5 < T, £ 10.2 [3-9])
¢06-010 2.697 4.0 £ T, < 4.5 [3-10}
€06-013 2.810 4.5 < Ty, £ 5.5 [3-11]
006-014 3.231 4.5<T, 5.3 [3-11}

*Due to nonlinear behavior of the instrumentation, the numbers
presented in this table are slightly in error. Refined data,
[3-12], were not available at the time these simul>tions were
performed.

0-4357
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TABLE 3-4.

A. HPDE Load Resistance Settings for Runs Prior to 006-008

Electrode | Reference Date Electrode | Reference Date
No. Resis. Q 1979 No. Resis. 1979
(K = 150) (K = 150)
-24 Open (=) Oct.10 17 28 Oct.10
-23 18 30
-22 19 28
-21 20 28
-20 . 21 30
-19 22 L
-18 23 3
-17 24 30
-16 25
-15 26
~14 27 39
-13 28 37
-12 29 39
-11 30 41
-10 31 39
-9 32 37
- 8 | 33 39
-7 34
-6 35
-5 36
- 4 37
-3 38
-2 39
-1 ﬁ 40
0 28 41
1 30 42 * *
2 30 4C 38 Oct.11
3 28 44
4 30 45
5 46
6 47
7 48
8 49
9 28 50
10 30 51
11 52
12 53
13 54
11 55
15 28 56
16 30 , 57 & t
N-4330
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TABLE 3-4. (cont.)
Electrode | Reference Date Electrode | Reference Date
No. Resis. @ 1979 No. Resis. 1979
(K = 150) (K = 150)

58 -8 Oct.11 102 53 Oct.1l5
39 47 103 51

60 104

61 105

62 100 53

63 107 56

64 50 108 58

65 47 109 53

66 50 110 51 4
67 47 111 50 Qct.1l6
68 112 50

69 113 52

70 114 50

71 50 115

72 47 116

73 117

74 118

75 119 52

76 120 50

77 121

78 122 i

79 * 123

80 50 124 l

81 51 Oct.15 125

82 126

23 127

84 128 52

85 129 50

86 130

87 53 131

88 51 132

89 133 52

90 134 52

91 135 50

92 53 136

23 51 137

94 138

95 139

96 140

97 141

98 142 48

99 143 52

100 144 50
101 { 145 52 6

0-4330-1
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TABLE 3-4. (cont.)

52

Flectrode | Reference Date Electrode | Reference Date

No. Resis. 1979 No. Resis. 1979
(K = 150) (K = 150)

146 50 Oct.16 190 67 Oct.17
147 52 191 69
148 52 192
149 50 193
150 52 164 64
151 195 67
152 196
153 197 69
154 50 198 67
155 199 69
156 200 69
157 5 201 67
158 50 202 69
159 203 67
160 204
162 205
162 ' 206 69
163 67 207 ‘
164 V 208
165 Oct.17 209 67
166 210 62
167 | ] 211 69
168 69 212 67
169 67 212 67
170 214 64
171 215 69 |
172 69 216 67 '
173 67 217 63 Oct.18
174 218 65
175 219
176 220
177 69 221 Y
178 67 222 63
179 69 223 65
180 67 224
181 69 225
182 67 226 '
183 69 227 68
184 67 228 65
185 229 68
186 230 68 !
187 231 65 i
188 232 65 ‘
189 ] 23 68

0-4330-2




TABLE 3-4. (cont.)

Electrode | Reference Date Electrode | Reference Date
No. Resis. @ 1979 No. Resis. @ 1979
(K = 150) (K = 150)
234 68 Oct.18 278 69 Oct.18
235 65 279 865
236 65 280 68
237 63 281 63
238 85 282
239 283
240 284 65
241 285
242 286
243 287 68
244 288 65
245 63 289
246 65 290
247 201 63
248 292 65
249 293
250 6 294
251 65 295
252 68 296 68
253 65 297 65
254 298 68
255 299 70
256 300 68
257 301 65
258 302 65
259 303 63
260 304 63
261 305 65
262 306 63
263 307 65
264 308 68
265 309 63
266 ' 310 65
267 68 311 68
268 65 312 70
269 68 313 65
270 65 314
271 315 ‘
272 316 67
273 68 317 67
274 63 318 63
275 65 319 68
276 63 320 63
277 65 # 321 65
0-4330-3
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TABLE 3-4. (cont.)

Electrode | Reference Date Electrode | Reference Date
No. Resis. Q 1979 No. Resis Q 1979
(K = 150) (K = 150)
322 70 Oct.18 367 70 Oct.19
323 65 368 68
324 68 369
325 68 370
326 65 371
327 63 372
328 68 373 66
329 65 374 70
330 65 375 63
331 70 376 89
332 68 377 91
333 65 378 89
334 63 379 89
335 65 380 105
336 65 381 103
337 382 108
338 383 127
339 384 152
340 385 164
341 386 176
342 70 387 Open («)
343 68 388
344 65 389
345 68 380
346 65 391
347 65 392
348 63 393
349 68 394
350 63 395
351 68 396
352 65 397
353 58 398
354 68 399
355 65 400
356 68 401
357 65 ' 402
358 70 Oct.19 403
359 70 404
360 68 405
361 70 406
362 70 407
363 68 408
364 409
365 410
366 70 i, 411 | %
0-4330-4
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TABLE 3-4. (cont,)

Electrode | Reference Date
No. Resis. Q 1979
(K = 150)

412 Open («) Oct.19
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
450
451
452
453

255 i i

0-4330-5
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TABLE 3-4.

(cont.)

B. HPDE Load Resistance Settings for Runs
Subsequent to 006-007

Electrode | Reference Date Electrode | Reference Date
No. Resis. Q 1979 No. Resis. Q 1979
(K = 150) (K = 150)
336 Open (=) Oct.1l8 377 142 Oct.18
337 378
338 379
339 380
340 381
341 382
342 383
343 384
344 385
345 386
346 387
347 388
348 389
349 390
350 391
351 392
352 393
353 394 Y
354 395 112
355 356 110
356 * 397 112
357 65 398
358 101 399
359 96 400
360 100 401 Open (=)
361 102 402
362 102 403
363 27 404
364 100 405
365 102 406
386 102 407
367 102 408
368 100 409
369 100 410
370 102 411
371 100 412
372 142 413
373 414
374 415
375 416
376 142 ] 417 ! ]
0-4330-6
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TABLE 3-4. (cont.)

Electrode | Reference Date
No. Resis. 1979
(K = .50)

418 Open (=) Oct.18
419
420
421
422
422
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455 \

0-4330-7
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TABLE 3-3

Water Conductiviiy in Load 3uckets for AEDC Experiments

Run No. Krun (uS/cm) Ref.
£06-006 178.0 [3-8]
006-008 175.4 {3-9]
00G6-010 178.6 [3-11])
006-011 approx. 182.0 [3-11]
006-012 172.4 [3-11]
C26-013 150.0 [3-15])
t06-014 160.0 (3-16])
0-4358
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TABLE 3-6

Flow Rates of Combustion Gases and
Runs 006-008 and 006-014

Component Run 006-008
Fuel (kg/s) 6.60
Oxidizer (kg/s) 40.99
Seed _kg/s) 1.84
Pilot (CH4) (kg/s) 0.034
N2/O2 ratio 1.0
Seed Concentration 0.3

(kg KCH/kg CHSOH)

Equivalence Ratio

(fuel lean) 1.5
Total enthalpy of combustion

gases (no losses) (MW) 299.3
Specific enthalpy of

combustion gases (MJ/kg) 6.05
Tflame (6 atm) {K) 3048

0-4359

S9

006-014
6.84

39.82
2.54

0.034

0.929

0.3

303.8

6.16
3063



TABLE 3-7
Load Resistances for AEDC Rumn 006-014

Data Averaged
Acquisition Electrode Nominal Experimental Indicated
Station Pair Resistance Resistance Conductivity
Number Number (K., = 150) 4.54 < T2 < 5.21 Factor
?ohms) {(ohms) (uS/cm)
1 42 39.1 36.64 160.0
2 84 50.9 48.19 158.4
3 126 50.0 47.97 156.3
4 168 69.1 65.63 157.8
S 210 61.9 61.25 151.6
6 252 67.8 66.02 154.0
7 294 65.5 65.82 149.3
8 336 65.5 65.70 149.5
9 376 141.6 153.71 138.2
0-4360
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Fig. 3.10. Electrical power output as a function of mass flowrate and
magnetic field for the nominal operating conditions of the
AEDC/HPDE, Code families: TRANSIENT and Q3D. Codes: QS
(solid symbols) and Q3DXY - Q3DXZ .,pen symbols). &all
computations completed before 18 September 1979.
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Q3D

Axial variation of the channel geometry in the AEDC/

HPDE at the nominal 2 T operating conditions:

calculation.

Fig. 3-12.
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Ax3i1l variation of the centerline gasdynamic variables
Q3D calculation.
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Fig.
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Q3D

Axial variation of the plasma parameters in the AEDC/

HPDE at the nominal 2 T operating conditions:

calculation.

2-14.

Fig.
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the AEDC/HPDE at the nominal 2 T operating conditions:

Axial variation of the power extraction parameters in
Q3D calculation
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field variables in

the AEDC/HPDE at the nominal 2 T operating conditions:

Axial variation of the electrical
Q3D calculations.
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Q3D cal-

Axial variation of the electric potential in the AEDC/

HPDE at the nominal 2 T operating conditions:

culation.

Fig. 3-20.
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Axial variation of the electrode boundary layer para-

meters in the AEDC/HPDE at the nominal 2 T operating

conditions:

3-22.

Fig.

Q3D calculation.
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SHOCK LOCATION
AXIAL DISTANCE FROM BURNER BACKPLATE, m

NOTE: A rule of thumb in supersonic flows is that a duct stalls 2-3 diameters
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upstrean of a noraal shock cosputed by one-dimensional gas dvnasics. (W~ 1.5-5)
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Fig. 3-31. Position of the normal shock as a function of mass flow rate and

9-3218a

magnetic field for the nominal operating conditions of the
AEDC/HPDE (except for the "NO SEED" point.) Code family:
TRANSIENT. Code: TQS.
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Fig. 3-75.

135



o
g8 ¢
‘- O
o~ o~

e
o o
u; .
-1 o

[~}
D o
N -
1%

o
®.

. o
x
o
Ztg; 8
Laiade ]
-
Z
T
fel ¢
&% o
P
A. —
[72] ;EO
ol lwS
'L Owl
J'jae
- wi
T (o
: -
(-]
42w
W ] Og |
1
0 |X
" 18
X0 ._ﬂB
NN @O -
. o~
- e
] L]

o
al ¢
2 o
n
ol 8
b4 7
&

0-4149
Fig.

STD RESEARCH CORPORATION

INTERACTION PARAMETER BRSED ON VELOCITY

10.00

HPOE RUN 005-014

L LA

9.00

7.00 8.00

'

6.00

L

Il

6.00

L

ERRCTION PRARAMETER
4.00

3.00

VELOCITY INT

2.00

I

0.00

T

Q3D COMPUTATION CHPQUUWIBO

T T

]

.81 1.81 2.81

3.81
X

LA L
§.81 6.81 7.81

3-76. Interaction parameter based on velocity HPDE Run

006-0- 4

136



ST D RESEARCHM CORPORATION

INTERACTION PARAMETER BASED ON PRESSURE

8 o HPOE RUN 006-014
o
§‘ - Y T T T T T
Q3D COMPUTATION CHPQUUUJBO
el o
8 ™ -
[=]
o
« ol &l 4
oo
=
[~
?l o
f4 - -
o
< |Sg
& ] :; ] N
=
a
sla
z°. oo
S#1="
- |2
'-
=22,
i
W
e |5
xﬂ
A
[ 3 =~ 2K -T
O v
W
volx
ola
ool & -
a ™ ¢
"
(-]
?] o
= RS .
Njvr
(-3 [~
O-_J .: - +-
°  “B 1.81 2.81 3.81 .81 5.81 6.8l 7.81
X (M)
0-4150
Fig. 3-77. Interaction parameter based on pressure HPDE Run
006-014

137



ST D AESEARCH CORPORATION

7.8

. 5
- '“
w
= F 3 -2
a 3
-
s | G =
z= ™
£ | 3 ™
55| k£ -
« =
g & e
ELM o
= w *
- o] @
mm" 1 c -
o
[y
Zz o
[ & ) 0 p -
. --u4 t-“ 0- c- qﬂ kd 3 Y -
6a°2 a3 00 Lt 08° 1 a3+t of..xuo:#z HAUW ad —. 000
00°02¢ 00°0t¢ 00°*00¢ 00°082 00'0d2 00°DLZ  00°'092 0Q°092 00 092 00°0C€2Z =9 000212
1Ol (M) 01 *3aNIYY3LN3L J1]101S m
. N - - & Yy - Y N
oot vl oohye 0P 2 098y PR, au Baundi T BRTLe O OF ©%
. 22 00+003 00 8Lt 00’ oM 00831 00° 001} o g 00°08 -43 00°0
cocds  oe-s 1m0 R (3/W°0 aFabhan Ttk O P
00 od1 00* 08 oo.mm... a0° e 06°09 3.%22 %opmq.wz:a%mmm.m umommwn aa.a_m 00" 0
00°001 ao0° 08 oe.mv_: 00° G¢ 00°0e ( m..moo Jd .omm_.m...o 03 zn.m.ﬂ_mo:cwnoﬂnw g 9008 @ 00- 0
001 T8 od- (Y- od [ 14 o2

od* or*
CEN/0N%) OHY °*ALISN3O SSYUM

ore N 000

X (M)

0-4147

Centerline gasdynamic variables HPDE Run 006-014

Fig- 3‘78-

138



STD RESEARCH CORPORATION

ELECTRODE BOUNDRRY LRYER PARRiICTERS

WPOE RUN DOS-014

4.01 5.0) $.01 7.0

X (M)

3.8t

139

Electrode boundary layer parameters HPDE Run
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